衡水金卷先享题2023-2024年高三一轮周测卷5数学试卷答案,我们目前收集并整理关于衡水金卷先享题2023-2024年高三一轮周测卷5数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
衡水金卷先享题2023-2024年高三一轮周测卷5数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
19.己知椭圆的对称中心为原点O,焦点在x轴上,椭圆上异于长轴顶点的任意点A与左右两焦点F1,F2 构成的三角形中面积的最大值为$\sqrt{3}$,且点($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)在该椭圆上.
(1)求椭圆的方程:
(2)已知点A,B是椭圆上的两动点,若OA⊥OB时,求|AB|的最小值.
分析由条件利用二倍角的正弦公式化简函数的解析式,再根据正弦函数的最大值求得函数y的最大值以及取得最大值时,x的值.
解答解:根据函数y=sinx•$\sqrt{3}$cosx=$\frac{\sqrt{3}}{2}$sin2x(0≤x<2π)取得最大值$\frac{\sqrt{3}}{2}$时,
应有2x=2kπ+$\frac{π}{2}$,k∈Z,求得x=k$π+\frac{π}{4}$,故x=$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.
点评本题主要考查二倍角的正弦公式,正弦函数的最值,属于基础题.
衡水金卷先享题2023-2024年高三一轮周测卷5数学
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/106944.html