1. 首页
  2. 学习方法

普洱市2024~2023学年度高一年级下学期期末联考(23-548A)数学

普洱市2024~2023学年度高一年级下学期期末联考(23-548A)数学试卷答案,我们目前收集并整理关于普洱市2024~2023学年度高一年级下学期期末联考(23-548A)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

普洱市2024~2023学年度高一年级下学期期末联考(23-548A)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

3.某农副产品从5月1日起开始上市,通过市场调查,得到该农副产品种植成本Q(单位:元/kg)与上市时间t(单位:天)的数据如表:

时间天 50 110 250
种植成本 150 108 150
(1)根据上表数据,从下列函数模型中选出一个适当的函数来描述农副产品种植成本Q与上市时间t的变化关系,要求简述你选择的理由并求出该函数表达式.参考函数:Q=at+b,Q=at2+bt+c;Q=abt;Q=alogbt(以上均有a≠0)
(2)利用你选出的函数模型,求该农副产品最低种植成本及相应的上市时间.

分析求出原函数的导函数,由导数的几何意义和条件得:3x2+2ax+3>2恒成立,利用二次函数的性质和△列出不等式,再求出实数a的范围.

解答解:由题意得,f′(x)=3x2+2ax+3,
因为f(x)的图象上任意不同两点连线的斜率均大于2,
所以3x2+2ax+3>2恒成立,即3x2+2ax+1>0,
则△=4a2-4×3×1<0,解得$-\sqrt{3}<a<\sqrt{3}$,
所以实数a的取值范围是(-$\sqrt{3}$,$\sqrt{3}$).

点评本题考查利用导数研究曲线上某点的切线方程,导数的几何意义,以及二次函数的性质,是基础题.

普洱市2024~2023学年度高一年级下学期期末联考(23-548A)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/108526.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息