2024届河北省金太阳高一年级4月联考(22-03-387A)数学试卷,语文、数学、英语、物理、化学、生物、历史、地理、政治等更多试卷答案请关注微信号:趣找答案,获取更多2
以下展示关于2024届河北省金太阳高一年级4月联考(22-03-387A)其他内容,相关完整试卷及其答案请关注本站或直接访问(www.qzda.com)
;
已知圆M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切圆M于A,B两点。
(1)若Q(1,0),求切线QA,QB的方程;
(2)求四边形QAMB面积的最小值;
(3)若|AB|=,求直线MQ的方程。
【答案】(1)和;(2);(3)或
【解析】试题分析:(1)讨论直线的斜率是否存在,根据圆心到直线的距离等于半径求出直线的斜率;
(2)根据面积公式可知MQ最小时,面积最小,从而得出结论;
(3)根据切线的性质列方程取出MQ的值,从而得出Q点坐标,进而求出直线MQ的方程.
试题解析:
(1)设过点Q的圆M的切线方程为x=my+1,
则圆心M到切线的距离为1,
所以,所以m=或0,
所以QA,QB的方程分别为3x+4y-3=0和x=1。
(2)因为MA⊥AQ,所以S四边形MAQB=|MA|·|QA|=|QA|=。
所以四边形QAMB面积的最小值为。
(3)设AB与MQ交于P,则MP⊥AB,MB⊥BQ,
所以|MP|=。
在Rt△MBQ中,|MB|2=|MP||MQ|,
即1=|MQ|,所以|MQ|=3,所以x2+(y-2)2=9。
设Q(x,0),则x2+22=9,所以x=±,所以Q(±,0),
所以MQ的方程为2x+y+2=0或2x-y-2=0。
….
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/10940.html