九师联盟·2023届全国高三单元阶段综合卷(老高考)KH数学试题,我们目前收集并整理关于九师联盟·2023届全国高三单元阶段综合卷(老高考)KH数学试题得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
九师联盟·2023届全国高三单元阶段综合卷(老高考)KH数学试题,以下是该试卷的部分内容或者是答案亦或者啥也没有
17.已知函数f(x)在区间[-5,5]上是偶函数,在区间[0,5]上是单调函数,且f(3)<f(1),则( )
A. | f(-1)<f(-3) | B. | f(0)>f(-1) | C. | f(-1)<f(1) | D. | f(-3)<f(-5) |
分析(1)利用两角和的正弦函数公式化简函数解析式可得f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,由2k$π-\frac{π}{2}$≤2x+$\frac{π}{4}$≤2k$π+\frac{π}{2}$,k∈Z,可解得f(x)的单调递增区间.
(2)由f(x)≥2得sin(2x+$\frac{π}{4}$)$≥\frac{\sqrt{2}}{2}$,从而解得2kπ+$\frac{π}{4}$≤2x+$\frac{π}{4}$≤2kπ$+\frac{3π}{4}$,即可解得x的取值集合.
解答(本小题满分12分)
解:(1)f(x)=2cosx(sinx+cosx)
=2sinxcosx+2cos2x
=sin2x+1+cos2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,…(3分)
由2k$π-\frac{π}{2}$≤2x+$\frac{π}{4}$≤2k$π+\frac{π}{2}$,k∈Z,可解得f(x)的单调递增区间为:[kπ$-\frac{3π}{8}$,k$π+\frac{π}{8}$],k∈Z.…(6分)
(2)∵由f(x)≥2得sin(2x+$\frac{π}{4}$)$≥\frac{\sqrt{2}}{2}$,…(9分)
∴2kπ+$\frac{π}{4}$≤2x+$\frac{π}{4}$≤2kπ$+\frac{3π}{4}$,可得kπ≤x≤k$π+\frac{π}{4}$,…(11分)
∴x的取值集合为:[kπ,k$π+\frac{π}{4}$],k∈Z.…(12分)
点评本题主要考查了两角和的正弦函数公式,正弦函数的图象和性质的应用,考查了计算能力,属于中档题.
九师联盟·2023届全国高三单元阶段综合卷(老高考)KH数学试题
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/13783.html