1. 首页
  2. 学习方法

学林教育2024~2023学年度第一学期八年级期末调研试题(卷)数学

学林教育2024~2023学年度第一学期八年级期末调研试题(卷)数学试卷答案,我们目前收集并整理关于学林教育2024~2023学年度第一学期八年级期末调研试题(卷)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

学林教育2024~2023学年度第一学期八年级期末调研试题(卷)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

5.已知a+b+c=0,求证:a3+a2c+b2c-abc+b3=0.

分析由g(x)=f(x-1),g(x)是奇函数,可以推导函数f(x)是周期为4的周期函数,由g(x)的图象过点(-1,3),得g(-1)=3,利用g(x)是奇函数,则g(1)=-3,结合函数的奇偶性和周期性,可以进行求值.

解答解:∵g(x)=f(x-1),g(x)是奇函数,
∴g(-x)=-g(x),
即f(-x-1)=-f(x-1),
又f(x)是偶函数,
∴f(-x-1)=-f(x-1)=f(x+1),
即f(x+2)=-f(x),
∴f(x+4)=f(x),即函数f(x)的周期性为4,
∴f(2012)=f(0),
∵g(x)=f(x-1),
∴g(2013)=f(2013-1)=f(2012)=f(0),
∴f(2012)+g(2013)=2f(0),
∵g(x)的图象过点(1,3),得g(1)=3,
又g(1)=f(0),
∴f(0)=g(1)=3,
∴f(2012)+g(2013)=2f(0)=6.
故选:A.

点评本题主要考查函数奇偶性和周期性的应用,利用条件推导函数f(x)是周期函数是解决本题的关键,综合考查了学生的运算推导能力.

试题答案

学林教育2024~2023学年度第一学期八年级期末调研试题(卷)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/25688.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息