1. 首页
  2. 学习方法

2023年永州市高考第二次适应性考试数学

2023年永州市高考第二次适应性考试数学试卷答案,我们目前收集并整理关于2023年永州市高考第二次适应性考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023年永州市高考第二次适应性考试数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

17.下列四个命题中.真命题的个数是(  )
①存在这样的角α和β,使得cos(α+β)=cosαcosβ+sinαsinβ
②不存在无穷多个角α和β,使cos(α+β)=cosαcosβ+sinαsinβ
③对于任意的角α和β,cos(α+β)=cosαcosβ-sinαsinβ
④不存在这样的角α和β,cos(α+β)≠cosαcosβ-sinαsinβ

A. 1个 B. 2个 C. 3个 D. 4个

分析对x${\;}^{\frac{2}{3}}$+y${\;}^{\frac{2}{3}}$=a${\;}^{\frac{2}{3}}$两边对x求导,可得$\frac{2}{3}$${x}^{-\frac{1}{3}}$+$\frac{2}{3}$${y}^{-\frac{1}{3}}$•y′=0,代入切点的坐标,可得斜率,再由点斜式方程,可得切线的方程.

解答解:对x${\;}^{\frac{2}{3}}$+y${\;}^{\frac{2}{3}}$=a${\;}^{\frac{2}{3}}$两边对x求导,可得
$\frac{2}{3}$${x}^{-\frac{1}{3}}$+$\frac{2}{3}$${y}^{-\frac{1}{3}}$•y′=0,
即有y′=-$\frac{{x}^{-\frac{1}{3}}}{{y}^{-\frac{1}{3}}}$,
可得在点($\frac{\sqrt{2}}{4}$a,$\frac{\sqrt{2}}{4}$a)处的切线斜率为k=-1,
则在点($\frac{\sqrt{2}}{4}$a,$\frac{\sqrt{2}}{4}$a)处的切线方程为y-$\frac{\sqrt{2}}{4}$a=-(x-$\frac{\sqrt{2}}{4}$a),
即为x+y-$\frac{\sqrt{2}}{2}$a=0.

点评本题考查导数的运用:求切线的方程,考查直线方程的求法,两边同时对x求导是解题的关键.

试题答案

2023年永州市高考第二次适应性考试数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/30182.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息