湖北省2024-2023学年度上学期高二武汉市重点中学4G+联合体期末考试数学试卷答案,我们目前收集并整理关于湖北省2024-2023学年度上学期高二武汉市重点中学4G+联合体期末考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
湖北省2024-2023学年度上学期高二武汉市重点中学4G+联合体期末考试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
4.若函数y=f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,则$\frac{f(x)+f(-x)}{2x}<0$的解集为( )
A. | (-3,3) | B. | (-3,0)∪(3,+∞) | C. | (-∞,-3)∪(0,3) | D. | (-∞,-3)∪(3,+∞) |
分析先根据函数f(x)为R上的奇函数得f(0)=0,再得出函数是以4为周期的函数,由此可得f(1)=f(2)=f(3)=f(4)=0,共有9个零点.
解答解:因为f(x)是定义域为R的奇函数,
所以f(0)=0,即图象过原点,
所以有零点x=0,
又因为f(x+4)=f(x)+f(2),
令x=-2得,
f(2)=f(-2)+f(2),
所以,f(-2)=0,
而f(-2)=f(-2+4)=f(2)=0,
所以有零点x=±2,如右图,
且f(x+4)=f(x),函数是以4为周期的函数,
当x∈(0,2)时,f(x)=lnx,单调递增,有零点x=1,
所以,f(3)=f(-1)=-f(1)=0,f(4)=f(0)=0,
因此,当x∈(0,4]时,函数的零点依次为:1,2,3,4,
再根据对称性,函数共有零点9个.
故答案为:9.
点评本题主要考查了函数零点的判断,涉及分段函数的奇偶性,单调性,周期性及其图象,属于中档题.
湖北省2024-2023学年度上学期高二武汉市重点中学4G+联合体期末考试数学
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/31249.html