1. 首页
  2. 学习方法

2024-2023学年高三第二学期浙江省名校协作体试题(2023.02)数学

2024-2023学年高三第二学期浙江省名校协作体试题(2023.02)数学试卷答案,我们目前收集并整理关于2024-2023学年高三第二学期浙江省名校协作体试题(2023.02)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2024-2023学年高三第二学期浙江省名校协作体试题(2023.02)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

9.已知函数f(x)=|x|,
(1)解不等式f(x-2)≤2-f(x);
(2)证明:对任意实数x≠0,有$f({\frac{1}{x}-1})+f({x+1})≥2$.

分析(I)求得函数的对称轴方程,讨论区间为增区间和减区间,即可得到所求范围;
(Ⅱ)由于函数f(x)在区间[-1,3]上的最小值可能是顶点处或端点处的函数值.分别求得m的值,运用单调性检验即可得到所求值.

解答解:(I)函数f(x)=x2-2mx+2m+1的对称轴为x=m,
若函数f(x)在区间(3m-1,2m+3)上是单调递增,
即有m≤3m-1,且3m-1<2m+3,
解得$\frac{1}{2}$≤m<4;
若函数f(x)在区间(3m-1,2m+3)上是单调递减,
即有m≥2m+3,且3m-1<2m+3,
解得m≤-3.
综上可得m的取值范围是(-∞,-3]∪[$\frac{1}{2}$,4);
(Ⅱ)由于函数f(x)在区间[-1,3]上的最小值
可能是顶点处或端点处的函数值.
若f(-1)最小,且为-7,则1+2m++2m+1=-7,
解得m=-$\frac{9}{4}$<-1,即有区间[-1,3]为增区间,成立;
若f(3)为最小值-7,即有9-6m+2m+1=-7,
解得m=$\frac{17}{4}$>3,则区间[-1,3]为递减区间,成立;
若f(m)为最小值-7,即有m2-2m2+2m+1=-7,
解得m=4或-2,不成立,舍去.
综上可得m=-$\frac{9}{4}$或$\frac{17}{4}$.

点评本题考查二次函数的单调性的运用,考查二次函数的最值的求法,注意运用分类讨论的思想方法,考查运算能力,属于中档题.

2024-2023学年高三第二学期浙江省名校协作体试题(2023.02)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/36683.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息