1. 首页
  2. 学习方法

鞍山市普通高中2024-2023学年度上学期高一质量监测数学

鞍山市普通高中2024-2023学年度上学期高一质量监测数学试卷答案,我们目前收集并整理关于鞍山市普通高中2024-2023学年度上学期高一质量监测数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

鞍山市普通高中2024-2023学年度上学期高一质量监测数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

14.已知双曲线my2-x2=1(m∈R)与抛物线y=$\frac{1}{8}$x2有相同的焦点,则该双曲线的渐近线方程为y=±$\sqrt{3}$x.

分析求出抛物线的焦点坐标,设出方程与抛物线联立,再根据抛物线的定义,即可求得结论.

解答解:抛物线y2=8x的焦点为F(2,0),
若直线l的斜率不存在,则|FA|=m=|PB|=n=4,
此时m•n=16,
若直线l的斜率存在,设l:y=kx-2k,与y2=8x联立,消去y可得k2x2-(4k2+8)x+4k2=0
设A,B的横坐标分别为x1,x2
则x1+x2=4+$\frac{8}{{k}^{2}}$,x1x2=4
根据抛物线的定义可知|FA|=m=x1+2,|PB|=n=x2+2,
∴m•n=(x1+2)(x2+2)=x1x2+2(x1+x2)+4=16+$\frac{8}{{k}^{2}}$>16,
综上所述,m•n的取值范围为[16,+∞),
故选:D.

点评本题重点考查抛物线定义的运用,考查直线与抛物线的位置关系,将抛物线上的点到焦点的距离转化为到准线的距离是解题的关键.

鞍山市普通高中2024-2023学年度上学期高一质量监测数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/40176.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息