安徽省2024-2023学年九年级三月份限时练习(3月)数学试卷答案,我们目前收集并整理关于安徽省2024-2023学年九年级三月份限时练习(3月)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
安徽省2024-2023学年九年级三月份限时练习(3月)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
7.已知:对?x∈R,y=(x)满足f(a+x)=f(b-x)(其中a,b为常数),求证:y=f(x)的图象关于直线x=$\frac{a+b}{2}$对称.
分析(1)由双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率$\frac{\sqrt{6}}{2}$,可得a,c的关系,进而可得a,b的关系,即可求双曲线C的渐近线方程;
(2)利用双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率$\frac{\sqrt{6}}{2}$,它的一个顶点到较近的焦点的距离为$\sqrt{3}$-$\sqrt{2}$,建立方程,求出a,c,可得b,即可求出双曲线的标准方程.
解答解:(1)∵双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率$\frac{\sqrt{6}}{2}$,
∴$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$,
∴1+$\frac{{b}^{2}}{{a}^{2}}$=$\frac{3}{2}$,
∴$\frac{b}{a}$=$\frac{\sqrt{2}}{2}$,
∴双曲线C的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x;
(2)∵双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率$\frac{\sqrt{6}}{2}$,它的一个顶点到较近的焦点的距离为$\sqrt{3}$-$\sqrt{2}$,
∴$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$,c-a=$\sqrt{3}$-$\sqrt{2}$,
∴c=$\sqrt{3}$,a=$\sqrt{2}$
∴b=1,
∴双曲线的标准方程为$\frac{{x}^{2}}{2}-{y}^{2}$=1.
点评本题考查双曲线的渐近线方程,标准方程,考查学生的计算能力,比较基础.
安徽省2024-2023学年九年级三月份限时练习(3月)数学
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/58208.html