1. 首页
  2. 学习方法

2023届全国普通高等学校招生统一考试(新高考) JY高三模拟卷(五)数学

2023届全国普通高等学校招生统一考试(新高考) JY高三模拟卷(五)数学试卷答案,我们目前收集并整理关于2023届全国普通高等学校招生统一考试(新高考) JY高三模拟卷(五)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023届全国普通高等学校招生统一考试(新高考) JY高三模拟卷(五)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

9.已知定义域为R的函数$f(x)=\frac{{-{2^x}-b}}{{{2^{x+1}}+2}}$是奇函数.
(Ⅰ)求实数b的值;
(Ⅱ)判断并证明函数f(x)的单调性;
(Ⅲ)若关于x的方程f(x)=m在x∈[0,1]上有解,求实数m的取值范围.

分析(1)根据x年的总费用除以年数x可得到年平均污水处理费用,可得到关系式.
(2)将关系式化简为y=x+$\frac{64}{x}$+2.5(x>0),根据均值不等式可求出年平均费用的最低值和对应的年数.

解答解:(1)由题意可知,年平均污水处理费用为:y=$\frac{64+1.5x+(2+4+6+…+2x)}{x}$=$\frac{{x}^{2}+2.5x+64}{x}$(x>0);
(2)由均值不等式得:y=x+$\frac{64}{x}$+2.5≥2$\sqrt{x•\frac{64}{x}}$+2.5=18.5(万元)
当且仅当x=$\frac{64}{x}$,即x=8时取到等号
所以该企业8年后需要重新更换新设备,平均最低费用是18.5(万元).

点评本题主要考查均值不等式的应用.考查对基础知识的理解和认识.属中档题.

2023届全国普通高等学校招生统一考试(新高考) JY高三模拟卷(五)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/63440.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息