2023学年普通高等学校统一模拟招生考试新未来4月高三联考数学试卷答案,我们目前收集并整理关于2023学年普通高等学校统一模拟招生考试新未来4月高三联考数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023学年普通高等学校统一模拟招生考试新未来4月高三联考数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
12.在△ABC中,A,B,C所对的边分别为a,b,c,2c2-2a2=b2
(1)求$\frac{ccosA-acosC}{b}$的值;
(2)若a=1,tanA=$\frac{1}{3}$,求△ABC的面积S.
分析(1)解方程组$\left\{\begin{array}{l}{3x-4y-5=0}\\{(x-2)^{2}+(y-1)^{2}=25}\end{array}\right.$,能求出A、B两点的坐标.
(2)求出圆心C(2,1)到直线l:3x-4y-5=0的距离和圆半径,由此能求出|AB|,设P(2+5cosθ,1+5sinθ)是圆上任意一点,求出点P到直线l:3x-4y-5=0的距离h的最大值,由此能求出△ABM面积的最大值.
解答解:(1)∵直线l:3x-4y-5=0与圆C:(x-2)2+(y-1)2=25交于A,B两点,
∴解方程组$\left\{\begin{array}{l}{3x-4y-5=0}\\{(x-2)^{2}+(y-1)^{2}=25}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\frac{59+8\sqrt{154}}{25}}\\{y=\frac{13+6\sqrt{154}}{25}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{59-8\sqrt{154}}{25}}\\{y=\frac{13-6\sqrt{154}}{25}}\end{array}\right.$,
∴A($\frac{59+8\sqrt{154}}{25}$,$\frac{13+6\sqrt{154}}{25}$),B($\frac{59-8\sqrt{154}}{25}$,$\frac{13-6\sqrt{154}}{25}$).
(2)∵圆心C(2,1)到直线l:3x-4y-5=0的距离d=$\frac{|6-4-5|}{\sqrt{9+16}}$=$\frac{3}{5}$,圆半径r=5,
∴|AB|=2$\sqrt{{5}^{2}-(\frac{3}{5})^{2}}$=$\frac{4\sqrt{154}}{5}$.
设P(2+5cosθ,1+5sinθ)是圆上任意一点,
点P到直线l:3x-4y-5=0的距离h=$\frac{|6+15cosθ-4-20sinθ|}{\sqrt{9+16}}$=$\frac{|15cosθ-20sinθ+2|}{5}$=$\frac{|25sin(θ+α)+2|}{5}$,
∴hmax=$\frac{27}{5}$,
∴△ABM面积的最大值S=$\frac{1}{2}×\frac{4\sqrt{154}}{5}×\frac{27}{5}$=$\frac{54\sqrt{154}}{25}$.
点评本题考查交点坐标的求法,考查三角形面积的最大值的求法,是中档题,解题时要认真审题,注意点到直线距离公式、圆的参数方程的性质的合理运用.
2023学年普通高等学校统一模拟招生考试新未来4月高三联考数学
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/73043.html