1. 首页
  2. 学习方法

安徽省2025届七年级第七次阶段性测试(R-PGZX G AH)数学

安徽省2025届七年级第七次阶段性测试(R-PGZX G AH)数学试卷答案,我们目前收集并整理关于安徽省2025届七年级第七次阶段性测试(R-PGZX G AH)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

安徽省2025届七年级第七次阶段性测试(R-PGZX G AH)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

1.已知双曲线的方程为$\frac{{x}^{2}}{4}$-y2=1,A、B分别为其左、右顶点,P是双曲线右支上位于x轴上方的动点,则kPA+kPB的取值范围是(  )

A. [2,+∞) B. (2,+∞) C. [$\frac{5}{2}$,+∞) D. (1,+∞)

分析Sn=$\frac{4}{3}$an-$\frac{{2}^{n+1}}{3}$+$\frac{2}{3}$,当n≥2时,an=Sn-Sn-1,an=4an-1+2n,变形为${a}_{n}+{2}^{n}$=4$({a}_{n-1}+{2}^{n-1})$,再利用等比数列的通项公式可得:an+2n=4n.可得Sn=$\frac{({2}^{n+1}-1)({2}^{n+1}-2)}{3}$,于是$\frac{{2}^{k}}{{S}_{k}}$=$\frac{{3•2}^{k}}{2({2}^{k}-1)({2}^{k+1}-1)}$=$\frac{3}{2}$$(\frac{1}{{2}^{k}-1}-\frac{1}{{2}^{k+1}-1})$,再利用“裂项求和”可得Tn

解答解:当n=1时,${a}_{1}=\frac{4}{3}{a}_{1}$-$\frac{4}{3}+\frac{2}{3}$,解得a1=2.
当n≥2时,an=Sn-Sn-1=$\frac{4}{3}$an-$\frac{{2}^{n+1}}{3}$+$\frac{2}{3}$-$(\frac{4}{3}{a}_{n-1}-\frac{{2}^{n}}{3}+\frac{2}{3})$,化为:an=4an-1+2n
变形为${a}_{n}+{2}^{n}$=4$({a}_{n-1}+{2}^{n-1})$,
∴数列$\{{a}_{n}+{2}^{n}\}$是等比数列,首项为4,公比为4.
∴an+2n=4n
∴an=4n-2n
∴Sn=$\frac{4}{3}({4}^{n}-{2}^{n})$-$\frac{{2}^{n+1}}{3}$+$\frac{2}{3}$=$\frac{({2}^{n+1}-1)({2}^{n+1}-2)}{3}$,
∴$\frac{{2}^{k}}{{S}_{k}}$=$\frac{{3•2}^{k}}{2({2}^{k}-1)({2}^{k+1}-1)}$=$\frac{3}{2}$$(\frac{1}{{2}^{k}-1}-\frac{1}{{2}^{k+1}-1})$,
∴Tn=$\sum_{k=1}^{n}\frac{{2}^{k}}{{S}_{k}}$=$\frac{3}{2}[(\frac{1}{2-1}-\frac{1}{{2}^{2}-1})$+$(\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1})$+…+$(\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1})]$
=$\frac{3}{2}$$(1-\frac{1}{{2}^{n+1}-1})$.

点评本题考查了递推关系的应用、等比数列的通项公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.

安徽省2025届七年级第七次阶段性测试(R-PGZX G AH)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/77546.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息