1. 首页
  2. 学习方法

2023年全国高考猜题密卷(一)数学

2023年全国高考猜题密卷(一)数学试卷答案,我们目前收集并整理关于2023年全国高考猜题密卷(一)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023年全国高考猜题密卷(一)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

7.已知{an}是递增的等差数列,a1、a5是关于x方程x2-6x+5=0的两个根.
(1)求通项公式an;   
(2)求数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和.

分析设2x=sinθ,利用三角函数化简y=$\sqrt{2}$(|sin($\frac{θ}{2}$+$\frac{π}{4}$)|+|cos($\frac{θ}{2}$+$\frac{π}{4}$)|),从而求值域.

解答解:设2x=sinθ,
则$y=\sqrt{1+2x}+\sqrt{1-2x}$=$\sqrt{1+sinθ}$+$\sqrt{1-sinθ}$
=|sin$\frac{θ}{2}$+cos$\frac{θ}{2}$|+|sin$\frac{θ}{2}$-cos$\frac{θ}{2}$|
=$\sqrt{2}$|sin($\frac{θ}{2}$+$\frac{π}{4}$)|+$\sqrt{2}$|sin($\frac{θ}{2}$-$\frac{π}{4}$)|
=$\sqrt{2}$(|sin($\frac{θ}{2}$+$\frac{π}{4}$)|+|cos($\frac{θ}{2}$+$\frac{π}{4}$)|)
∵1≤|sin($\frac{θ}{2}$+$\frac{π}{4}$)|+|cos($\frac{θ}{2}$+$\frac{π}{4}$)|≤$\sqrt{2}$,
∴$\sqrt{2}$≤$\sqrt{2}$(|sin($\frac{θ}{2}$+$\frac{π}{4}$)|+|cos($\frac{θ}{2}$+$\frac{π}{4}$)|)≤2,
故选C.

点评本题考查了三角函数的化简与值域的求法,关键在于换元.

2023年全国高考猜题密卷(一)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/83035.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息