1. 首页
  2. 学习方法

江西省2024-2023学年高二5月阶段性测试数学

江西省2024-2023学年高二5月阶段性测试数学试卷答案,我们目前收集并整理关于江西省2024-2023学年高二5月阶段性测试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

江西省2024-2023学年高二5月阶段性测试数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

18.探讨下列各式中,角x分别为何值时,式子失去意义:
(1)tanx+$\frac{1}{sinx}$;
(2)$\frac{\sqrt{tanx}}{sinx}$.

分析换元t=log2x,求得0≤t≤1,化简g(x)即为h(t)=t2+4t+2,0≤t≤1,求出对称轴t=-2,可得h(t)在[0,1]为增函数,计算即可得到所求最值.

解答解:∵f(x)=1+log2x(1≤x≤4),
∴$\left\{\begin{array}{l}{1≤x≤4}\\{1≤{x}^{2}≤4}\end{array}\right.$,即1≤x≤2,
∵f(x)=1+log2x(1≤x≤4),
g(x)=f2(x)+f(x2)=(1+log2x)2+1+2log2x,
∴g(x)=(log2x)2+4log2x+2,1≤x≤2
设t=log2x,则h(t)=t2+4t+2,0≤t≤1,
∵对称轴t=-2,h(t)在[0,1]为增函数,
则g(x)的最小值为h(0)=2,最大值为h(1)=7.

点评本题考查函数的最值的求法,注意运用换元法转化为二次函数求值域问题,注意自变量的范围,同时考查对数函数的单调性的运用,属于中档题和易错题.

江西省2024-2023学年高二5月阶段性测试数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/90893.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息