广东省2024-2023学年高一下学期5月统一调研测试数学试卷答案,我们目前收集并整理关于广东省2024-2023学年高一下学期5月统一调研测试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
广东省2024-2023学年高一下学期5月统一调研测试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
11.已知f(x)=lnx+2.
(I)试分析方程f(x)=kx+k(k>0)在[1,e]上是否有实根,若有实数根,求出k的取值范围;否则,请说明理由;
(Ⅱ)若函数h(x)=f(x)-x-1,数列{an}的通项公式为an=$\frac{1}{n}$,其前n项和为Sn,根据函数h(x)的性质,求证:2×3×4×…×n>e(n-Sn).
分析利用和差公式可得:函数f(x)=2sin(ωx+$\frac{π}{6}$),令2sin(ωx+$\frac{π}{6}$)=1,化为sin(ωx+$\frac{π}{6}$)=$\frac{1}{2}$,解得ωx+$\frac{π}{6}$=2kπ+$\frac{π}{6}$或ωx+$\frac{π}{6}$=2kπ+$\frac{5π}{6}$,k∈Z.由于在曲线y=f(x)与直线y=1的交点中,相邻交点距离的最小值是$\frac{π}{3}$,可得x2-x1=$\frac{2π}{3ω}$=$\frac{π}{3}$,即可得出.
解答解:函数f(x)=$\sqrt{3}$sinωx+cosωx=2($\frac{\sqrt{3}}{2}$sinωx+$\frac{1}{2}$cosωx)=2sin(ωx+$\frac{π}{6}$),
令2sin(ωx+$\frac{π}{6}$)=1,
化为sin(ωx+$\frac{π}{6}$)=$\frac{1}{2}$,
解得ωx+$\frac{π}{6}$=2kπ+$\frac{π}{6}$或ωx+$\frac{π}{6}$=2kπ+$\frac{5π}{6}$,k∈Z.
∵在曲线y=f(x)与直线y=1的交点中,相邻交点距离的最小值是$\frac{π}{3}$,
∴$\frac{5π}{6}$-$\frac{π}{6}$+2kπ=ω(x2-x1),令k=0,
∴x2-x1=$\frac{2π}{3ω}$=$\frac{π}{3}$,
解得ω=2.
故选:B.
点评本题考查了三角函数的图象与性质、三角函数方程的解法,考查了推理能力与计算能力,属于中档题.
广东省2024-2023学年高一下学期5月统一调研测试数学
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/94304.html