贵州省2023年高二年级6月联考(23-503B)数学试卷答案,我们目前收集并整理关于贵州省2023年高二年级6月联考(23-503B)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
贵州省2023年高二年级6月联考(23-503B)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
14.已知数列{an}的前n项和${S_n}={n^2}$,则a5的值为( )
A. | 9 | B. | 11 | C. | 15 | D. | 25 |
分析①f(-x)=sin(-2x)•cos(-x)=-sin2x•cosx,因此,f(-x)=-f(x),所以f(x)为奇函数;
②f(-x)=$\sqrt{1+sin(-x)}$+$\sqrt{1-sin(-x)}$=$\sqrt{1-sinx}$+$\sqrt{1+sinx}$,因此,f(-x)=f(x),所以f(x)为偶函数;
③f(-x)=$\frac{{e}^{sin(-x)}+{e}^{-sin(-x)}}{{e}^{sin(-x)}-{e}^{-sin(-x)}}$=$\frac{{e}^{-sinx}+{e}^{sinx}}{{e}^{-sinx}-{e}^{sinx}}$,因此,f(-x)=-f(x),所以f(x)为奇函数.
解答解:直接根据函数奇偶性的定义,判断如下:
①∵f(x)=(-sin2x)•(-cosx)=sin2x•cosx,
∴f(-x)=sin(-2x)•cos(-x)=-sin2x•cosx,
因此,f(-x)=-f(x),所以f(x)为奇函数;
②∵f(x)=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$.
∴f(-x)=$\sqrt{1+sin(-x)}$+$\sqrt{1-sin(-x)}$=$\sqrt{1-sinx}$+$\sqrt{1+sinx}$,
因此,f(-x)=f(x),所以f(x)为偶函数;
③∵f(x)=$\frac{{e}^{sinx}+{e}^{-sinx}}{{e}^{sinx}-{e}^{-sinx}}$,
∴f(-x)=$\frac{{e}^{sin(-x)}+{e}^{-sin(-x)}}{{e}^{sin(-x)}-{e}^{-sin(-x)}}$=$\frac{{e}^{-sinx}+{e}^{sinx}}{{e}^{-sinx}-{e}^{sinx}}$,
因此,f(-x)=-f(x),所以f(x)为奇函数.
点评本题主要考查了函数奇偶性的判断,涉及三角函数的诱导公式,属于中档题.
贵州省2023年高二年级6月联考(23-503B)数学
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/98456.html