高考数学二轮专题复习圆锥曲线专题01《中点问题》(含详解)
高考数学二轮专题复习圆锥曲线专题01《中点问题》(含详解),以下展示关于高考数学二轮专题复习圆锥曲线专题01《中点问题》(含详解)的相关内容节选,更多内容请多关注我们
1、高考数学二轮专题复习圆锥曲线专题01中点问题过椭圆内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程已知曲线C:3x24y212,试确定m的取值范围,使得对于直线y4xm,曲线C上总有不同两点关于该直线对称已知椭圆的离心率是,直线y被椭圆E截得的线段长为()求椭圆E的方程;()若椭圆E两个不同的点A,B关于直线ymx对称,求实数的取值范围已知椭圆的一个焦点与抛物线y28x的焦点重合,点,在C上()求C的方程;()直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:的斜率与直线l的斜率的乘积为定值已知椭圆的一个顶点为A(2,0),离心率为(1)求椭
2、圆C的方程;(2)经过点M(1,1)能否作一条直线l,使直线l与椭圆交于A,B两点,且使得M是线段AB的中点,若存在,求出它的方程;若不存在,说明理由已知双曲线,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由在ABC中,|BC|是|AB|、|AC|的等差中项,且B(-1,0),C(1,0)(1)求顶点A的轨迹G的方程;(2)若G上存在两点关于直线l:y2xm对称,求实数m的取值范围已知椭圆C过点P(2,2),且与椭圆有相同的焦点(1)求椭圆C的标准方程;(2)若椭圆C上存在A、B两点关于直线l:yxm对
13、下列有关日环食的说法合理的是ACD丁乙A.甲图日环食现象中太阳是光源,月亮不是光源B.乙图中彩虹形成的原理与环食相同飞C.丙图用水中映日来进行日环食安全观测,利用了平面镜成像原理D.丁图用带巴德膜的望远镜进行日环食安全观测,望远镜中的凸透镜对光有会聚作用
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/99164.html