1. 首页
  2. 学习方法

[遂宁一诊]四川省遂宁市高中2023届第一次诊断性考试数学

[遂宁一诊]四川省遂宁市高中2023届第一次诊断性考试数学试卷答案,我们目前收集并整理关于[遂宁一诊]四川省遂宁市高中2023届第一次诊断性考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

[遂宁一诊]四川省遂宁市高中2023届第一次诊断性考试数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

[遂宁一诊]四川省遂宁市高中2023届第一次诊断性考试数学

(3)请设计实验,探究导致大豆净光合速率下降的主要因素是高温还是干旱(写出实验设计思路)8.(10分)中暑是指人体在高温环境中,水和电解质丢失过多,散热功能素乱引起的以中枢神经

分析求出f(x)的导数,由题意可得方程k=x2lnx在x>0上有两解,令g(x)=x2lnx,求出导数,求得单调区间可得极值和最值,确定k的范围,再由x1,x2的范围,运用不等式的性质,可得f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0,进而得证.

解答证明:f(x)=xlnx-$\frac{k}{x}$(k<0),
∴f′(x)=1+lnx+$\frac{k}{{x}^{2}}$,
∵函数f(x)的图象与x轴交于两点A(x1,0),B(x2,0),
∴x1lnx1-$\frac{k}{{x}_{1}}$=0,x2lnx2-$\frac{k}{{x}_{2}}$=0,
即有方程k=x2lnx在x>0上有两解,
令g(x)=x2lnx,g′(x)=2xlnx+x,由g′(x)=0,解得x=$\frac{1}{\sqrt{e}}$,
当x>$\frac{1}{\sqrt{e}}$时,g′(x)>0,g(x)递增;
当0<x<$\frac{1}{\sqrt{e}}$时,g′(x)<0,g(x)递减.
即有x=$\frac{1}{\sqrt{e}}$处取得最小值,且为-$\frac{1}{2e}$,
即有-$\frac{1}{2e}$<k<0,
可设0<x1<$\frac{1}{\sqrt{e}}$,$\frac{1}{\sqrt{e}}$<x2<1,
即有$\frac{1}{2\sqrt{e}}$<$\frac{{x}_{1}+{x}_{2}}{2}$<$\frac{1}{2}$+$\frac{1}{2\sqrt{e}}$,
令x0=$\frac{{x}_{1}+{x}_{2}}{2}$,即有f′($\frac{{x}_{1}+{x}_{2}}{2}$)=f′(x0)=1+lnx0+$\frac{k}{{{x}_{0}}^{2}}$,
由$\frac{1}{2\sqrt{e}}$<x0<$\frac{1}{2}$+$\frac{1}{2\sqrt{e}}$,可得ln$\frac{1}{2\sqrt{e}}$<lnx0<ln($\frac{1}{2}$+$\frac{1}{2\sqrt{e}}$),
即有lnx0∈(-1.5,-1),$\frac{k}{{{x}_{0}}^{2}}$<0,
则有f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0,
故f′($\frac{{x}_{1}+{x}_{2}}{2}$)≠0.

点评本题主要考查利用导数研究函数的单调性,极值和最值,体现了转化的数学思想,属于中档题.

试题答案

[遂宁一诊]四川省遂宁市高中2023届第一次诊断性考试数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/27008.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息