4、先平移:,则再放缩时,若纵坐标变为原来的倍,那么,无论取何值,也无法达到,所以需要对前一步进行调整:平移个单位,再进行放缩即可()二、典型例题:例1:要得到函数的图像,只需要将函数的图像( )A. 向左平移个单位 B. 向右平移个单位 C. 向右平移个单位 D. 向左平移个单位思路:观察发现原始函数与变换后的函数仅仅多一个常数,说明只有平移变换,在变换的过程中要注意只有含的地方进行了变化,所以只有,所以是向右平移个单位答案:C小炼有话说:(1)图像变换要注意区分哪个是原始函数,哪个是变化后的函数。(2)对于前面含有系数时,平移变换要注意系数产生的影响。例2:把函数的图像上所有的点横坐标都缩小到
5、原来的一半,纵坐标保持不变,再把图像向右平移个单位,这是对应于这个图像的解析式是( )A. B. C. D. 思路:,经过化简可得:答案:A 例3:为了得到函数的图像,可以将函数的图像( )A. 向左平移个单位 B. 向右平移个单位 C. 向右平移个单位 D. 向左平移个单位思路:观察可发现两个函数的三角函数名不同,而图像变换是无法直接改变三角函数名的,只有一个可能,就是在变换后对解析式进行化简,从而使得三角函数名发生改变。所以在考虑变换之前,首先要把两个函数的三角函数名统一,第二步观察可得只是经过平移变换,但是受到系数影响。所以考虑对两个函数进行变形以便于观察平移了多少,目标函数:;原函数:可得平移了个单位答案:B小炼有话说:常见的图像变换是不能直接改变三角函数名,所以当原函数与目标函数三角函数名不同时,首先要先统一为正弦或者余弦例4:要得到的图像只需将的图像( )A. 先向左平移个单位,再将图像上各点的横坐标缩短至原来的B. 先向右平移个单位,再将图像上各点的横坐标缩短至原来的C. 先将图像上各点的横坐标缩短至原来的,再将图像向左平移个单位D. 先将图像上各点的横坐标扩大为至原来的倍,再将图像向右平移个单位思路:本题中共用两个步骤:平移与放缩。步骤顺序的不同将会导致平