1. 首页
  2. 学习方法

吉林省"BEST合作体"2024-2023学年度高一年级下学期期末数学

吉林省"BEST合作体"2024-2023学年度高一年级下学期期末数学试卷答案,我们目前收集并整理关于吉林省"BEST合作体"2024-2023学年度高一年级下学期期末数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

吉林省"BEST合作体"2024-2023学年度高一年级下学期期末数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

8.已知椭圆C:$\frac{{x}^{2}}{4}$+y2=1,Q为椭圆C的左顶点,斜率为k(k≠0)的直线l与椭圆C交于A、B两点,当∠AQB=$\frac{π}{2}$时,直线1过x轴上的定点N,则点N的坐标为N(-$\frac{2}{5}$,0)或($-\frac{6}{5},0$).

分析对x${\;}^{\frac{2}{3}}$+y${\;}^{\frac{2}{3}}$=a${\;}^{\frac{2}{3}}$两边对x求导,可得$\frac{2}{3}$${x}^{-\frac{1}{3}}$+$\frac{2}{3}$${y}^{-\frac{1}{3}}$•y′=0,代入切点的坐标,可得斜率,再由点斜式方程,可得切线的方程.

解答解:对x${\;}^{\frac{2}{3}}$+y${\;}^{\frac{2}{3}}$=a${\;}^{\frac{2}{3}}$两边对x求导,可得
$\frac{2}{3}$${x}^{-\frac{1}{3}}$+$\frac{2}{3}$${y}^{-\frac{1}{3}}$•y′=0,
即有y′=-$\frac{{x}^{-\frac{1}{3}}}{{y}^{-\frac{1}{3}}}$,
可得在点($\frac{\sqrt{2}}{4}$a,$\frac{\sqrt{2}}{4}$a)处的切线斜率为k=-1,
则在点($\frac{\sqrt{2}}{4}$a,$\frac{\sqrt{2}}{4}$a)处的切线方程为y-$\frac{\sqrt{2}}{4}$a=-(x-$\frac{\sqrt{2}}{4}$a),
即为x+y-$\frac{\sqrt{2}}{2}$a=0.

点评本题考查导数的运用:求切线的方程,考查直线方程的求法,两边同时对x求导是解题的关键.

吉林省"BEST合作体"2024-2023学年度高一年级下学期期末数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/109258.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息