1. 首页
  2. 趣搜题

2024年上海市宝山区高三二模数学试卷及答案

2024年上海市宝山区高三二模数学试卷及答案

2024年上海市宝山区高三二模数学试卷及答案,以下展示关于2024年上海市宝山区高三二模数学试卷及答案的相关内容节选,更多内容请多关注我们网站

1、2023学年第二学期期中高三年级数学学科教学质量监测试卷考生注意:1.本试卷共21题,满分150分,考试时间120分钟;2.本试卷包括试题卷和答题纸两部分,答题纸另页,正反面;3.在本试题卷上答题无效,必须在答题纸上的规定位置按照要求答题;4.可使用符合规定的计算器答题.一、填空题(本大题共有12题,满分54分,第16题每题4分,第712题每题5分),要求在答题纸相应题序的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.抛物线,=4歹的隹点坐标为.2.已知 tan a=3,则 tan(a 一 今)=-3.将万忑(其中a0)化为有理数指数指的形式为4,已知向量a=(2叽2),(1,w+

2、1),若夕右=10,则实数加=.5.设实数x、y满足(x+yi)i-2+4i=(*-必1+。1为虚数单位),则x+y=.6.有一组数丛个到木排列为:3,5,x,8,9,10.若其极差与平均数相等,则这组数 据的中位数为.7.已知集合4=侬。+1|,4+3,且1”,则实数a的值为.8.在数列%,中,q=2,n.2),则q00=.9.某公司为了了解某商品的月销售量y(单位:万件)与月销售单价x(单位:元/件)之间的关系,随机统计了 5个月的销售量与销售单价,并制作了如下对照表:月销售单价x(元/件)月销售量y(万件)A由表中数据可得回归方程),=方+力中。=-0.32,试预测当月销售单价为40元/

3、件时,月销售量为 万件.v2 210.已知双曲线一q_=i(a0,Z,0),以双曲线的右顶点4为圆心,6为半在作圆,圆4与双曲线的一条渐近线交于M、N两点,若NM4N=60,则双曲线的离心率为.11.某区域的地形大致如下左图,某部门负责该区域的安全警戒,在哨位。的正上方安装探 照灯对警戒区域进行探查扫描.第1页共4页假设i:警戒区域为空旷的扇环形平地44/”片:假设2:视探照灯为点且距离地面20米;假设3:探照灯M照射在地面上的光斑是椭圆.当探照灯以某一俯角从44用侧扫描到以丹+1侧时,记为一次扫描,此过程中照射 在地面上的光斑形成一个扇环1伍=1,2,3,.).由此,通过调整”的俯角,逐次扫

4、描形成 扇环2、S3.第一次扫描时,光斑的长轴为即,|O E|=30米,此时在探照灯必处测得点尸的俯 角为30(如下右图).记|44=4,经测量知I4/”1=80米,旦4是公差约为01米 的等差数列,则至少需要经过 次扫描,才能将整个警戒区域扫描完毕.12.空间直角坐标系中,从原点出发的两个向量、否满足:a-h=2,|=1,且存在实数Z,使得|-2|+亦|2 0成立,则由。构成的空间儿何体的体积是.二、选择题(本大题共有4题,满分18分,第1314题每题4分,第1516题每题5分),每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结 论代号涂黑,选对得相应满分,

5、否则一律得零分.13.己知a60,贝!J().1 1A.a2 b2 B.2 2 C.a2 log,b2 214.已知随机变量X服从正态分布N(0,cr2).若P(Xo)=2,则尸的;若OA=2,/BOP=60,圆柱的体积为16岳,求异面直.线AP与A.B所成角的 大小.19.(木题满分16分,笫1小题满分3分,第2小题满分6分,笫3小题满分7分)在课外活动中,甲、乙两名同学进行投篮比赛,每人投3次,每投进一次得2分,否则 得0分.已知甲每次投进的概率为,,且每次投篮相互独立;乙第一次投篮,投进的概率为 21 3从第二次投篮开始,若前一次投进,则该次投进的概率为己,若前一次没投进,则该2 52次

6、投进的概率为求甲投篮3次得2分的概率;(2)若乙投篮3次得分为X,求X的分布和期望;(3)比较中、乙的比赛结果.第3页共4页20.(本题满分16分,第1小题满分3分,第2小题满分6分,第3小题满分7分)已知双曲线2=1的左、右顶点分别为力、B,设点尸在笫一象限且在双曲线上,2。为坐标原点.(1)求双曲线的两条渐近线夹角的余弦值;(2)若沙河W9,求标的取值范围;(3)椭圆。的长轴长为2板,且短轴的端点恰好是力、3两点,直线/P与椭圆的另 个交点为0.记,04、3的面积分别为,、邑.求Sj-S2?的最小值,并写出取 最小值时点P的坐标.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)函数 y=g(x)的表达式为 g(x)=sin(ox)(0 0).(1)若。=1,直线/与曲线y=g(x)相切于点皮,1),求直线/的方程;(2)函数y=g(x)的最小正周期是2冗,令(x)=xg(x)-Inx,将函数y=/?(*)的零 点由小到大依次记为甚,工2,X”,(之N),证明:数列sinX”是严格减数列;(3)已知定义在R上的奇函数歹=/(x)满足f(x+2a)=-f(

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/130225.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息