2023届衡水金卷先享题调研卷 湖南专版 三数学试卷答案,我们目前收集并整理关于2023届衡水金卷先享题调研卷 湖南专版 三数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023届衡水金卷先享题调研卷 湖南专版 三数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
1.已知双曲线的方程为$\frac{{x}^{2}}{4}$-y2=1,A、B分别为其左、右顶点,P是双曲线右支上位于x轴上方的动点,则kPA+kPB的取值范围是( )
A. | [2,+∞) | B. | (2,+∞) | C. | [$\frac{5}{2}$,+∞) | D. | (1,+∞) |
分析可设P(7$\sqrt{2}$cosα,7sinα),0≤α<2π,A(0,5),即有|PA|=$\sqrt{(7\sqrt{2}cosα)^{2}+(7sinα-5)^{2}}$,再由同角的平方关系和正弦函数的值域,配方即可得到所求最值.
解答解:点P为椭圆x2+2y2=98上一个动点,
可设P(7$\sqrt{2}$cosα,7sinα),0≤α<2π,
A(0,5),即有|PA|=$\sqrt{(7\sqrt{2}cosα)^{2}+(7sinα-5)^{2}}$
=$\sqrt{-49si{n}^{2}α-70sinα+123}$
=$\sqrt{-49(sinα+\frac{5}{7})^{2}+148}$,
由-1≤sinα≤1,可得sinα=-$\frac{5}{7}$时,|PA|取得最大值2$\sqrt{37}$;
当sinα=1,即α=$\frac{π}{2}$时,|PA|取得最小值2.
点评本题考查椭圆的参数方程的运用,考查三角函数的化简和求值,注意运用同角的平方关系和正弦函数的值域,属于中档题.
2023届衡水金卷先享题调研卷 湖南专版 三数学
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/25509.html