1. 首页
  2. 学习方法

安徽第一卷·2023年安徽中考信息交流试卷(二)数学

安徽第一卷·2023年安徽中考信息交流试卷(二)数学试卷答案,我们目前收集并整理关于安徽第一卷·2023年安徽中考信息交流试卷(二)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

安徽第一卷·2023年安徽中考信息交流试卷(二)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

3.定义在R上函数f(x)满足f(1)=1,f′(x)<2,则满足f(x)>2x-1的x的取值范围是(-∞,1).

分析由题意可得当点A与圆心的距离最小时,切线长PA、PB最小,此时四边形OPAQ的面积最小,由距离公式和面积公式求解可得.

解答解:∵圆x2+y2=1的圆心为C(0,0),半径r=1,
当点A与圆心的距离最小时,切线长PA、PB最小,
此时四边形OPAQ的面积最小,
∴圆心到直线3x+4y=10的距离d=$\frac{10}{\sqrt{{3}^{2}+{4}^{2}}}$=2,
∴|PA|=|PB|=$\sqrt{{d}^{2}-{r}^{2}}$=$\sqrt{3}$,
∴四边形OPAQ的面积S=2×$\frac{1}{2}$|PA|r=$\sqrt{3}$,
故选:A.

点评本题考查圆的切线方程,得出当点A与圆心的距离最小时OPAQ的面积最小是解决问题的关键,属中档题.

安徽第一卷·2023年安徽中考信息交流试卷(二)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/53328.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息