1. 首页
  2. 学习方法

[湖南]2023年湖南省高一年级阶段性诊断考试(23-353A)数学

[湖南]2023年湖南省高一年级阶段性诊断考试(23-353A)数学试卷答案,我们目前收集并整理关于[湖南]2023年湖南省高一年级阶段性诊断考试(23-353A)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

[湖南]2023年湖南省高一年级阶段性诊断考试(23-353A)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

11.已知数列{an}满足a1=1,an=a2n-1-1(n>1),则a5=-1.

分析(1)运用函数奇偶性的定义判断函数的奇偶性;
(2)根据函数单调性的定义,运用作差法证明函数的单调性.

解答解:(1)因为f(x)=f(x)=x+$\frac{1}{x}$,
所以,该函数的定义域为(-∞,0)∪(0,+∞)
且f(-x)=(-x)+$\frac{1}{-x}$=-(x+$\frac{1}{x}$),
所以,f(-x)=-f(x),
即f(x)为奇函数;
(2)任取x1,x2∈(0,1),且x1<x2
则f(x1)-f(x2)=x1+$\frac{1}{{x}_{1}}$-(x2+$\frac{1}{{x}_{2}}$)
=(x1-x2)+($\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$)
=(x2-x1)•$\frac{1-{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$,
因为x1,x2∈(0,1),且x1<x2,所以,x1x2∈(0,1),
所以,f(x1)-f(x2)>0恒成立,
即f(x)在(0,1)上单调递减.

点评本题主要考查了函数奇偶性和单调性的判断和证明,应用了单调性和奇偶性的定义及作差法,属于基础题.

[湖南]2023年湖南省高一年级阶段性诊断考试(23-353A)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/56405.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息