广西2023年4月高中毕业班第三次联合调研考试数学试卷答案,我们目前收集并整理关于广西2023年4月高中毕业班第三次联合调研考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
广西2023年4月高中毕业班第三次联合调研考试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
6.已知f(x)为定义在R上的可导函数,下列命题:
①若y=f(x)是奇函数,且在(0,+∞)上单调递增,则当x<0时,f(x)<0;
②若对任意的x>0,都有f(x)<f(0),则函数y=f(x)在[0,+∞)上一定是减函数;
③“函数y=|f(x)|的图象关于y轴对称”是“y=f(x)为奇函数”的必要不充分条件;
④若存在xi∈[a,b](1≤i≤n;n≥2;i,n∈N+),当x1<x2<x3<…<xn时,有f(x1)<f(x2)<f(x3)<…<f(xn),则函数y=f(x)在区间[a,b]上是单调递增;
⑤若?x0∈(a,b)使f′(x0)=0,且f′(a)f′(b)<0,则x=x0为函数y=f(x)的一个极值点.
其中正确命题的序号为①③⑤.
分析先将函数f(x)=loga(4-ax)转化为y=logat,t=4-ax两个基本函数,再利用复合函数的单调性求解.
解答解:令y=logat,t=4-ax,
①若0<a<1,则函y=logat,是减函数,
由题设知t=4-ax为增函数,需a<0,故此时无解.
(2)若a>1,则函数y=logat是增函数,则t为减函数,
需a>0,且4-a×2>0,可解得1<a<2,
综上可得实数a的取值范围是(1,2).
故选:B.
点评本题考查复合函数的单调性,关键是分解为两个基本函数,利用同增异减的结论研究其单调性,再求参数的范围,属于中档题.
广西2023年4月高中毕业班第三次联合调研考试数学
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/69831.html