[自贡三诊]自贡市普高2023届第三次诊断性考试数学试卷答案,我们目前收集并整理关于[自贡三诊]自贡市普高2023届第三次诊断性考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
[自贡三诊]自贡市普高2023届第三次诊断性考试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
15.设函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0),在($\frac{π}{6}$,$\frac{π}{2}$)上既无最大值,也无最小值,且-f($\frac{π}{2}$)=f(0)=f($\frac{π}{6}$),则下列结论成立的是①②④.(把你认为正确结论的序号都写上)
①若f(x1)≤f(x2)对任意实数x恒成立,则x2-x1必定是$\frac{π}{2}$的整数倍;
②y=f(x)的图象关于($\frac{4π}{3}$,0)对称;
③对于函数y=|f(x)|(x∈R)的图象,x=-$\frac{5π}{12}$一定是一条对称轴且相邻两条对称轴之间的距离是$\frac{π}{2}$;
④函数f(x)在每一个[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)上具有严格的单调性.
分析由已知求出|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow{b}=cosx+xsinx$,代入投影数量公式得到f(x),求导后再借助于函数零点存在性定理得答案.
解答解:∵向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(1,x),
∴|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow{b}=cosx+xsinx$,
∴向量$\overrightarrow{b}$在$\overrightarrow{a}$上投影的数量f(x)=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}=xsinx+cosx$.
∵x∈(-π,π),且f(-x)=-xsin(-x)+cos(-x)=xsinx+cosx=f(x),
∴f(x)为偶函数;
由f(x)=xsinx+cosx,得:
f′(x)=sinx+xcosx-sinx=xcosx,
当x∈(0,$\frac{π}{2}$)时,f′(x)>0,此时函数为增函数,
当x∈($\frac{π}{2},π$)时,f′(x)<0,此时函数为减函数.
∵f(0)=1>0,且f(π)=-1<0,
∴函数f(x)=xsinx+cosx在[0,π)上仅有一个零点.
由偶函数的对称性可知,在(-π,0)上f(x)=xsinx+cosx也有一个零点.
∴f(x)=xsinx+cosx是偶函数,且有两个零点.
故选:B.
点评本题考查平面向量的数量积运算,考查了向量在向量方向上投影的数量的求法,训练了利用导数研究函数的极值,是中档题.
[自贡三诊]自贡市普高2023届第三次诊断性考试数学
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/85013.html