1. 首页
  2. 学习方法

白银市2023年九年级毕业会考综合练习(23-02-RCCZ18c)数学

白银市2023年九年级毕业会考综合练习(23-02-RCCZ18c)数学试卷答案,我们目前收集并整理关于白银市2023年九年级毕业会考综合练习(23-02-RCCZ18c)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

白银市2023年九年级毕业会考综合练习(23-02-RCCZ18c)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

白银市2023年九年级毕业会考综合练习(23-02-RCCZ18c)数学

(3)在时间上,“十七年蝉”表现出了高度同步化的生命周期,在种群的正常生命周期之外,没有发现过早或过晚出现该种蝉。根据“自私牧群原则”分析,其原因可能是若过早或过晚出现,此时该种蝉的,个体难以从群体中获益,因此被选择下来的是高度同步化的大种群。

分析(1)由已知数列递推式可得an=2an-1+2,由此构造等比数列{an+2},求其通项公式后可得数列{an}的通项公式;
(2)把数列{an}的通项公式代入bn=log2(an+2),进一步得到数列{$\frac{{b}_{n}}{{a}_{n}+2}$}的通项公式,再利用错位相减法求数列{$\frac{{b}_{n}}{{a}_{n}+2}$}的前n项和Tn

解答(1)由Sn=2an-2n,得
当n≥2时,Sn-1=2an-1-2(n-1),
两式作差可得:an=2an-2an-1-2,即an=2an-1+2.
∴an+2=2(an-1+2).
则$\frac{{a}_{n}+2}{{a}_{n-1}+2}=2$.
当n=1时,S1=2a1-2,得a1=2.
∴数列{an+2}是以a1+2=4为首项,以2为公比的等比数列,
∴${a}_{n}+2=4•{2}^{n-1}$,
则${a}_{n}={2}^{n+1}-2$;
(2)由bn=log2(an+2)=$lo{g}_{2}{2}^{n+1}=n+1$,得$\frac{{b}_{n}}{{a}_{n}+2}$=$\frac{n+1}{{2}^{n+1}}$.
则${T}_{n}=\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}+…+\frac{n+1}{{2}^{n+1}}$ ①,
$\frac{1}{2}{T}_{n}=\frac{2}{{2}^{3}}+\frac{3}{{2}^{4}}+…+\frac{n}{{2}^{n+1}}+\frac{n+1}{{2}^{n+2}}$ ②,
①-②得
$\frac{1}{2}{T}_{n}=\frac{2}{{2}^{2}}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}}+…+\frac{1}{{2}^{n+1}}+\frac{n+1}{{2}^{n+2}}$
=$\frac{1}{4}+\frac{\frac{1}{4}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}-\frac{n+1}{{2}^{n+2}}=\frac{1}{4}+\frac{1}{2}-\frac{1}{{2}^{n+1}}-\frac{n+1}{{2}^{n+2}}$=$\frac{3}{4}-\frac{n+3}{{2}^{n+2}}$.
∴${T}_{n}=\frac{3}{2}-\frac{n+3}{{2}^{n+1}}$.

点评本题考查数列递推式,考查了等比关系的确定,训练了错位相减法求数列的和,是中档题.

白银市2023年九年级毕业会考综合练习(23-02-RCCZ18c)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/92606.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息