1. 首页
  2. 学习方法

2024~23年度考前模拟演练卷六6数学

2024~23年度考前模拟演练卷六6数学试卷答案,我们目前收集并整理关于2024~23年度考前模拟演练卷六6数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2024~23年度考前模拟演练卷六6数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

3.某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用f(x);
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.
(3)要使该月用于支付运费和保管费的资金费用最少,每批进货的数量应为多少?

分析∵f(-x)=$lo{g}_{\frac{1}{2}}$(x2+1)+$\frac{8}{3{x}^{2}+1}$=f(x),∴f(x)为R上的偶函数,且在区间[0,+∞)上单调递减,再通过换元法解题.

解答解:∵f(-x)=$lo{g}_{\frac{1}{2}}$(x2+1)+$\frac{8}{3{x}^{2}+1}$=f(x),
∴f(x)为R上的偶函数,且在区间[0,+∞)上单调递减,
令t=log2x,所以,$lo{g}_{\frac{1}{2}}x$=-t,
则不等式f(log2x)+f($lo{g}_{\frac{1}{2}}x$)≥2可化为:f(t)+f(-t)≥2,
即2f(t)≥2,所以,f(t)≥1,
又∵f(1)=$lo{g}_{\frac{1}{2}}$2+$\frac{8}{3+1}$=1,
且f(x)在[0,+∞)上单调递减,在R上为偶函数,
∴-1≤t≤1,即log2x∈[-1,1],
解得,x∈[$\frac{1}{2}$,2],
故选:B.

点评本题主要考查了对数型复合函数的性质,涉及奇偶性和单调性的判断及应用,属于中档题.

2024~23年度考前模拟演练卷六6数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/38296.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息