九师联盟·2023届新高考押题信息卷(四)4数学试卷答案,我们目前收集并整理关于九师联盟·2023届新高考押题信息卷(四)4数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
九师联盟·2023届新高考押题信息卷(四)4数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
17.设x∈R,向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则 ($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)的值是( )
A. | x | B. | 1 | C. | 0 | D. | -1 |
分析∵f(-x)=$lo{g}_{\frac{1}{2}}$(x2+1)+$\frac{8}{3{x}^{2}+1}$=f(x),∴f(x)为R上的偶函数,且在区间[0,+∞)上单调递减,再通过换元法解题.
解答解:∵f(-x)=$lo{g}_{\frac{1}{2}}$(x2+1)+$\frac{8}{3{x}^{2}+1}$=f(x),
∴f(x)为R上的偶函数,且在区间[0,+∞)上单调递减,
令t=log2x,所以,$lo{g}_{\frac{1}{2}}x$=-t,
则不等式f(log2x)+f($lo{g}_{\frac{1}{2}}x$)≥2可化为:f(t)+f(-t)≥2,
即2f(t)≥2,所以,f(t)≥1,
又∵f(1)=$lo{g}_{\frac{1}{2}}$2+$\frac{8}{3+1}$=1,
且f(x)在[0,+∞)上单调递减,在R上为偶函数,
∴-1≤t≤1,即log2x∈[-1,1],
解得,x∈[$\frac{1}{2}$,2],
故选:B.
点评本题主要考查了对数型复合函数的性质,涉及奇偶性和单调性的判断及应用,属于中档题.
九师联盟·2023届新高考押题信息卷(四)4数学
原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/84519.html