1. 首页
  2. 学习方法

甘肃省定西市2024~2023学年度第二学期七年级期末监测卷(23-01-RCCZ13a)数学

甘肃省定西市2024~2023学年度第二学期七年级期末监测卷(23-01-RCCZ13a)数学试卷答案,我们目前收集并整理关于甘肃省定西市2024~2023学年度第二学期七年级期末监测卷(23-01-RCCZ13a)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

甘肃省定西市2024~2023学年度第二学期七年级期末监测卷(23-01-RCCZ13a)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

16.已知函数f(x)=$\frac{1}{3}$ax3-$\frac{1}{2}$bx2+x.
(I)若曲线f(x)在点(1,f(1))处的切线方程为6x-6y-5=0,求a,b的值;
(Ⅱ)当a=-1时,函数f(x)在(1,+∞)上存在单调递增区间,求b的取值范围;
(Ⅲ)当a≥2时,设x1,x2是函数f(x)的两个极值,且f′(x)是f(x)的导函数,如果x2-x1=2,x∈(x1,x2)时,函数g(x)=f′(x)+2(x-x2)的最小值为h(a),求h(a)的最大值.

分析(1)由Sn=an-1(a>0,且a≠1),可得当n=1时,a1=a-1,a2=S2-S1.可得等比数列{an}的公比q=$\frac{{a}_{2}}{{a}_{1}}$.由于6a1,a3,a2成等差数列,可得6a1+a2=2a3,代入即可得出.
(2)bn=$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$=$2(\frac{1}{{2}^{n-1}+1}-\frac{1}{{2}^{n}+1})$.利用“裂项求和”即可得出.

解答解:(1)∵Sn=an-1(a>0,且a≠1),∴当n=1时,a1=a-1,a2=S2-S1=(a2-1)-(a-1)=a(a-1).
∴等比数列{an}的公比q=$\frac{{a}_{2}}{{a}_{1}}$=a.∵6a1,a3,a2成等差数列,∴6a1+a2=2a3,6a1+a1a=$2{a}_{1}{a}^{2}$,化为2a2-a-6=0,a>0,解得a=2.∴an=2n-1
(2)bn=$\frac{{a}_{n+1}}{({a}_{n}+1)({a}_{n+1}+1)}$=$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$=$2(\frac{1}{{2}^{n-1}+1}-\frac{1}{{2}^{n}+1})$.
∴Tn=$2[(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{{2}^{n-1}+1}-\frac{1}{{2}^{n}+1})]$=2$(\frac{1}{2}-\frac{1}{{2}^{n}+1})$=$\frac{{2}^{n}-1}{{2}^{n}+1}$.

点评本题考查了等差数列与等比数列的通项公式、“裂项求和”、递推关系的应用,考查了推理能力与计算能力,属于中档题.

甘肃省定西市2024~2023学年度第二学期七年级期末监测卷(23-01-RCCZ13a)数学

原创文章,作者:admin,如若转载,请注明出处:https://www.qusouti.cn/108549.html

联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息