2、同一向量作数量积运算,从而得到关于的方程,再进行求解(3)若所给图形比较特殊(矩形,特殊梯形等),则可通过建系将向量坐标化,从而得到关于的方程,再进行求解二、典型例题:例1:在中,为边的中点,为的中点,过点作一直线分别交于点,若,则的最小值是( )A. B. C. D. 思路:若要求出的最值,则需从条件中得到的关系。由共线可想到“爪”字型图,所以,其中,下面考虑将的关系转为的关系。利用条件中的向量关系:且,所以,因为,所以,由平面向量基本定理可得:,所以,所以,而,所以答案:A例2:如图,在中,是上的一点,若,则实数的值为( )A. B. C. D. 思路:观察到三点共线,利用“爪”字型图,可
3、得,且,由可得,所以,由已知可得:,所以答案:C例3:在平面内,已知,设,则等于( )A. B. C. D. 思路:所求为,可以考虑对两边同时对同一向量作数量积,从而得到的方程,解出,例如两边同对作数量积,可得:,因为,所以有,同理,两边对作数量积,可得:,即,所以,通过作图可得或,从而,代入可得:答案:B小炼有话说:(1)当向量等式中的向量系数含参时,可通过对两边作同一向量的数量积运算便可得到关于系数的方程。若要解出系数,则可根据字母的个数确定构造方程的数量(2)本题也可通过判定,从而想到建立坐标系通过坐标解出,进而求出例4:如图,在正六边形中,点是内(包括边界)的一个动点,设,则的取值范围
4、是( )A. B. C. D. 思路:因为为动点,所以不容易利用数量积来得到的关系,因为六边形为正六边形,所以建立坐标系各个点的坐标易于确定,可得:,则,所以设,则由可得:,因为在内,且,所以所满足的可行域为,代入可得:,通过线性规划可得:答案:例5:已知,则与的夹角的余弦值为_思路:若要求与的夹角,可联想到,所以只需确定与,由一方面可以两边同时对作数量积得到,另一方面等式两边可以同时取模长的平方计算出,进而求出解:且 答案:例6:如图,平面内有三个向量,其中与的夹角为,与的夹角为,且,若,则的值为_思路一:由图像可得:,由此条件中可提供的模长及相互的夹角,若要求得,可考虑求出的值。则需要两个