1. 首页 > 试题答案

2024-2025学年湖南省娄底三中高二(下)期末数学试卷(B卷)(含答案)

《2024-2025学年湖南省娄底三中高二(下)期末数学试卷(B卷)(含答案)》,以下展示关于《2024-2025学年湖南省娄底三中高二(下)期末数学试卷(B卷)(含答案)》的相关内容节选,更多内容请多关注我们网站

1、第 1页,共 9页2024-2025 学年湖南省娄底三中高二(下)期末数学试卷(学年湖南省娄底三中高二(下)期末数学试卷(B 卷)卷)一、单选题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的选项中,只有一项是符合题目要求的。1.复数(2+1)(2+)=()A.5B.5C.3D.32.已知(2 1)=2+3,则(6)的值为()A.15B.7C.31D.173.已知函数()=sin(+3)(0)的最小正周期为2,则(12)=()A.32B.12C.12D.324.某火箭发射离开发射架后,距离地面的高度(单位:)与时间(单位:)的函数关系式是()=100+1.52+4,设其在=0时

2、的瞬时速度为0,则当其瞬时速度为 40时,=()A.3B.4C.6D.85.若=0.20.3,=0.30.2,=20.3,则()A.B.C.D.6.函数()=+(+)2的图象如图所示,则()A.0,0,0B.0,0C.0,0,0D.0,0,07.已知数列,的通项公式分别为=4 3,=5 4,由,的公共项从小到大排列得到的数列为,则100=()A.1941B.1961C.1981D.20018.已知函数()=+1,02,0 ,若=()()有三个零点1,2,3,且1 2 0)的焦点为,过的直线交于,两点,过且垂直于的直线交抛物线的准线于点,在直线上的射影点分别为,|的最小值为 6(1)求抛物线的标

3、准方程;(2)求证:|=|;求|的最小值19.(本小题 17 分)设,是不同的正数,我们称为,的对数平均值,且+2,该不等式称为“对数平均不等式”(1)任意选择“对数平均不等式”的一边给出证明.(注:如果两边都给出证明,按第一个证明计分)(2)已知函数()=122()有两个极值点1,2,且1 2()求的取值范围;()利用“对数平均不等式”证明:2 1212第 4页,共 9页参考答案参考答案1.2.3.4.5.6.7.8.9.10.11.12.223=1(或223=1)13.214.4915.(1)因为 2=+,所以由正弦定理得:2=+,即 2=sin(+),得 2=,又因为 (0,),所以 0

4、,所以 2=1,解得=12,又因为 (0,),所以=3(2)证明:因为=2,所以由正弦定理得=2,由余弦定理得:2+2 2=2,即(2)2+2 2=2 2 3,化简得 52 2=22,所以2=32,因此2+2=32+2=42=2,所以 是直角三角形16.(1)根据题意可知,=11,=24,=142?=112+132+122+82=498,第 5页,共 9页=14?=11 25+13 29+12 26+8 16=1092,?=1092411244984112=187,?=24 187 11=307,所求线性回归方程为?=187 307;(2)=9 时,?=187 9 307 19,因此如果 8

5、月 5 日昼夜温差是 9时,预测因患感冒到惠民医院就诊的人数大约为 1917.(1)证明:连接11,因/平面,平面11,平面11平面=,所以/,设11 11=1,=,连接1,由在四棱台1111 中,平面/平面1111,平面 平面11=,平面1111平面11=11,因此得/11,又由题意知1=1,因此得四边形11是等腰梯形,所以1,同理可证1,因 =,平面,所以1平面,又底面是菱形,所以 ,因此以为原点,直线,1所在直线分别为轴,轴,轴,建立空间直角坐标系,如图,因为菱形的边长为 2,=60,因此=2,=23,因此1=11=1=3,11=1,因此1=32,所以(3,0,0),1(32,0,32)

6、,(0,1,0),(0,1,0),(3,0,0),因此1?=(3 32,0,32),?=(0,2,0),1?=(32,0,32),设?=?=(0,2,0),0 1,设平面的一个法向量为?=(1,1,1),第 6页,共 9页因此?1?=3 321+321=0?=21=0,令1=3,因此1=0,1=3,所以?=(3,0,3),所以1?=12?,即1平面,又1平面11,所以平面11平面;(2)设(0,0,0),因(0,1,0),1(0,12,32),因此?=(3,0,0),1?=(0,12,32),?=(0,0 1,0),所以?=3+30=0,因此得0=1,又在1上,设?=1?,因此0 1=120=32,解得0=23,可得(0,23,1),所以?=(3,23,1),?=(23,0,0),设平面的一个法向量为?=(2,2,2),因此?=32+232+2=0?=232=0,令2=3,因此2=0,2=2,因此得?=(0,3,2),所以|cos=|?|?|?|=623 13=3913,所以1 (3913)2=13013,故平面与平面夹角的正弦值为1301318.(1)因为抛物线:2=2(0),所以焦

本文内容由互联网用户自发贡献,作者:admin,如发现本站有涉嫌抄袭侵权/违法违规的内容, 请联系我们,一经查实,本站将立刻删除。